您现在的位置是: 首页 > 热门专业 热门专业

高考数学大题考哪些-高考数学大题考哪些题型

tamoadmin 2024-10-19 人已围观

简介1.高考八道数学大题的考核内容2.高考数学大题重点在哪几章内容3.全国卷高考数学的大题是什么的结构。 就是每个题的范围。4.高考数学六道大题是什么题型5.福建高考数学大题分为几大块高考八道数学大题的考核内容一、首先高考应该是6道大题,而不是8道吧。二、6道数学大题:1、三角函数(含解三角形)。考查周期性,最值、单调性、对称性等图像特征;诱导公式、两角和与差公式、二倍角公式、升幂降幂公式、辅助角公式

1.高考八道数学大题的考核内容

2.高考数学大题重点在哪几章内容

3.全国卷高考数学的大题是什么的结构。 就是每个题的范围。

4.高考数学六道大题是什么题型

5.福建高考数学大题分为几大块

高考八道数学大题的考核内容

高考数学大题考哪些-高考数学大题考哪些题型

一、首先高考应该是6道大题,而不是8道吧。

二、6道数学大题:

1、三角函数(含解三角形)。考查周期性,最值、单调性、对称性等图像特征;诱导公式、两角和与差公式、二倍角公式、升幂降幂公式、辅助角公式,正弦、余弦定理。整体思想(将某些角的组合看成一个角)可用于求值域、单调性、对称轴,求三角函数值等.

2、随机变量的分布列(含统计)。考查分层抽样、频率分布直方图、茎叶图、超几何分布、求分布列与期望。求分布列的步骤为:列值→求概率→列表→(检验,概率和=1)

3、立体几何。重点考查线⊥线、线⊥面、面⊥面的判定,也可能考线∥面,面∥面的判定。二面角、直线和平面所成的角,异面直线所成的角。

4、数列(含数学归纳法,放缩法)。考查等差等比数列的基本公式基本性质,两式相减消去或的方法,构造新数列,裂项法,错位相减法等.可能用到放缩法或基本不等式、数学归纳法、二项式定理等。

5、解析几何。直线的点斜式,圆、椭圆、双曲线、抛物线的定义以及标准方程、图形,椭圆、双曲线中a,b,c在图中的位置及三者的关系。联立→消元→判别式→韦达定理;点到直线距离公式,弦长公式。求轨迹方程的定义法,直接法,转化法(相关点法)。

6、函数与导数:函数的单调性、最值、极值,零点存在定理,分类讨论思想.

不知是否回答了你的问题

高考数学大题重点在哪几章内容

高考大题主要考的是如下几个方面:三角函数,必考内容,通常出现在第一大题。 立体几何和平面几何各考一个大题。 数列会出一个大题,最后一个大题是考函数的,第一问通常要用导数,后面两问,是关于函数的综合运用,包括函数的性质,不等式的运用,解方程等等

全国卷高考数学的大题是什么的结构。 就是每个题的范围。

高考数学满分150分,选择题12道,填空题4道,每题5分,共80分,剩余的部分为几道大题,共70分,所以大题在整个卷子中占了相当大的比例,大题考察的范围分别是:

1.数列或者三角函数

2.立体几何

3.概率统计

4.圆锥曲线

5.导数

6.选修题(参数方程和不等式)

一、数列

这类型题目明显感觉就比较难了,但同时掌握了套路和方法,这部分题也没什么难的。

数列主要是求解通项公式和前n项和。首先是通项公式,要看题目中给出的条件形式,不同的形式对应不同的解题方法,其中主要包括公式法(定义法)、累加法、累乘法、待定系数法、数学归纳法 倒数变化法等,熟练应用这些方法并积累例题达到熟练的程度,然后就是求前n项和,这里一共有四种方法,倒序相加法、错位相减法、分组求和法以及裂项相消法,只要求前n项和只要考虑以上方法即可,多数情况下考察错位相减法,同时也是大家失分项,所以在这里一定要强加练习,规范书写步骤。

二、三角函数

对于三角函数的学习关键是熟记公式及灵活的运用公式,其实高中数学也是一门记忆学科,数学更需要背诵,很多知识、解法、定理往往更需要我们花时间背下来,很多时候,解题过程中被卡住,并不是因为想不到思路,而是因为简单的公式或者定理掌握不好,甚至是记反了,当然同时也是对题型的陌生和对解题方法的陌生。

对于三角函数的考法共有两种,分别是解三角形和三角函数本身,大概百分之十到二十的概率考解三角形,百分之八十到九十概率考对于三角函数本身的熟练运用,之所以解三角函数考的概率低是因为出现这样的题目简直太简单了,根本就是送分题,关于解三角函数,我们学习了三个公式,正弦定理、余弦定理和面积公式,所以除去求面积的话一定要用的面积公式之外,剩余的公式如果不能迅速判断,就都试一下,只要推出来要求的结果就可以了。另外一种就是考察三角函数本身,这样的题的套路一般都是给定一个相对较复杂的式子,然后问这个函数的定义域值域周期频率单调性等问题,解决方法就是首先利用和差倍半公式对原始式子进行化简,化简成一般式然后求解需要求的。所以归根结底还是要熟记公式。

三、概率统计

以理科数学为例,考点覆盖概率统计必修和选修的各个章节的内容,考查了抽样法、统计图表、数据的数字特征、用样本估计整体、回归分析、独立性检验、古典概型、几何概型、条件概率、相互独立事件的概率、独立重复试验的概率、离散型随机变量的分布列、数学期望与方差、超几何分布、二项分布、正态分布等基础知识和基本方法,这样听起来感觉内容多而杂,但其实只要掌握了基本知识,再加上例题的引导,后期各做一道练习题加以巩固,在高考中概率统计拿满分不是什么难事。但是简单的同时更加要求我们的仔细严谨程度,切记不要出现忘平方、忘开根号等低级错误。

四、立体几何

这个题相对于前面的给分题难度稍微大一些,可能会卡住一部分人,这道题有两到三问,前面问的某条线的大小或者证明某个线或面与另外一个线或面平行或垂直,最后一问是求二面角,这类题解题方法有两种,传统法和向量法,各有利弊。向量法可以说说任何情况下都可以使用,没有任何技术含量,肯定能解出正确答案,但是计算量大而且容易出错,应用向量法,首先建立空间直角坐标系,然后根据已知条件可以用向量表示每条直线,最后利用向量的知识求解题目,传统法求解则是同样要求我们熟练掌握各种性质定理和判定定理,在立体几何这一部分还有一个关键的要点,就是书写格式,这也是很多同学在平时考试结束后有这样的疑问“为什么要扣我这儿的分,我都证出来了······”之类的话,就是因为我们平时不注重书写步骤丢掉了很多不该丢掉的分数,在这一部分的推断题中,一定要注重条件和结论,几个结论推出来的一定切记缺一不可,否则即使之后结果得证也不会拿到全分。

五、圆锥曲线

仔细观察高考卷会发现圆锥曲线也是有一定的套路的,一般套路就是,前半部分是对基本性质的考察,后半部分考察与直线相交,且后半部分的步骤几乎都是一致的,即,设直线,然后将直线方程带入圆锥曲线,得一个有关x的二次方程,分析判别式,利用韦达定理的结果求解待求量,在这里要明确它的求解方法:直接法(性质法)、定义法、直译法、相关点法、参数法、交轨法、点差法。

六、导数和函数

导数与函数的题型大体分为三类:

1.关于单调性、最值、极值的考察

2.证明不等式

3.函数中含有字母,分类讨论字母的取值范围

七、参数方程

这一部分题目可以说成是送分题,这儿就不过多阐述了,唯一的方法就是考前狂刷一下历年高考题,这样就算拿满分也不是什么难事。

高考数学六道大题是什么题型

高考数学六道大题的题型是:三角函数,概率,立体几何,函数,数列,解析几何。

1、三角函数。是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。

2、概率。它是反映随机事件出现的可能性大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。

3、立体几何。是3维欧氏空间的几何的传统名称,因为实际上这大致上就是我们生活的空间。一般作为平面几何的后续课程。

4、函数。数学术语。其定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。

5、数列。是以正整数集(或它的有限子集)为定义域的一列有序的数。数列中的每一个数都叫做这个数列的项。

6、解析几何。是一种借助于解析式进行图形研究的几何学分支。

学习数学重要性:

1、数学与我们生活息息相关。要说学数学的真正效果,它不是体现在应试教育上,而是将来自身的思维上。

2、数学的重要性不言而喻。数学是一切科学的基础,是培养逻辑思维重要渠道,可以说我们人类的每一次重大进步都有数学这门学科在做强有力的支撑。

3、生活中的数学知识运用无处不在。从日常生活中柴米油盐的费用的计算,到天文地理、质量控制、农业经济、航天事业都存在着运用数学的影子。

福建高考数学大题分为几大块

高考数学6个大题,固定的题型为:

1.解三角形。这个只考查正弦定理,余弦定理,有时候结合和差角公式,辅助角公式,向量。

2.数列。题型较为固定,一般都是求通项,求和。

3.统计概率。这部分常考的点为独立事件概率计算公式,二项分布,超几何分布,条件概率,古典概型,分布列期望,线性回归,独立性检验,有时候题目比较难,可能会有决策题,需要你根据题目背景自己选择合适的知识点,计算决策。

4.立体几何。考法基本固定,第一问证平行垂直,第二问除了文科数学考体积和距离,其他的都是空间角计算。

5.圆锥曲线。第一问求圆锥曲线方程,第二问用韦达定理处理,难度较大。

6.导数。压轴题最常考,题目很综合,一般可以转化为单调性,极值,最值,恒成立。方程根,极值点偏移等类型问题在进一步处理,这个题能拿多少步骤分就拿多少。

文章标签: # 数学 # 公式 # 高考